Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ming-Hua Zeng, ${ }^{\text {a }}$ Li-Hong Zhu, ${ }^{\text {b }}$ Hong Liang ${ }^{\mathrm{a}}$ and Seik Weng Ng^{c} *
${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, ${ }^{\mathbf{b}}$ Huanggang Normal College, Huangzhou, Hubei 438000, People's Republic of China, and ${ }^{\mathrm{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.141$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetraaquabis(3-pyridinecarboxamide- κN)copper(II) bis(2,4,6-trinitrophenolate)

The Cu atom in the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ $\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}$, exists in an all trans $-\mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Cu}$ octahedron; the anion interacts indirectly with the cation through the coordinated water molecules. Hydrogen bonds link the cations and anions into a three-dimensional network.

Comment

The picrate (2,4,6-trinitrophenolate) ion binds directly to copper in only a small number of examples such as the pyridine adduct (Simonov et al., 1985), the 4,4'-bipyridine adduct (Liang et al., 2001) and the diaqua complex that crystallizes with benzo-15-crown-5 (Ji et al., 1998). With N-heterocycles, the nature of the substituents affects the binding ability of the anion; this is reflected in the title complex with 3-pyridinecarboxamide (nicotinamide) whose cation consists of a tetraaquacopper unit that has the two ligands in a trans configuration in its octahedral coordination (Fig. 1). The two anions in the title compound, (I), interact indirectly with the metal through the coordinated water molecules, and the extensive hydrogen bonds (Table 2) give rise to a threedimensional network.

The compound is not isostructural with the Zn analog (Zeng et al., 2002) although it has similar hydrogen bonds linking the cations and anions.

Experimental

An aqueous ethanol solution ($1: 4 \mathrm{v} / \mathrm{v}, 10 \mathrm{ml}$) containing copper(II) nitrate hexahydrate $(0.149 \mathrm{~g}, 0.5 \mathrm{mmol})$ was mixed with an ethanol solution $(10 \mathrm{ml})$ of nicotinamide $(0.122 \mathrm{~g}, 1.0 \mathrm{mmol})$. To the mixture was added an ethanol solution (10 ml) of picric acid $(0.299 \mathrm{~g}$, $1.0 \mathrm{mmol})$. The pH of the mixture was adjusted to about 5 by the addition of drops of dilute nitric acid. Blue crystals separated from the solution after several days in 60% yield.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}(-\right.$
$\left.\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}$
$M_{r}=836.07$
Triclinic, $P \overline{1}$
$a=7.154(1) \AA$
$b=14.360(2) \AA$
$c=15.704(2) \AA$
$\alpha=84.85(1)^{\circ} \AA$
$\beta=88.61(1)^{\circ}{ }^{\circ}$
$\gamma=83.31(1)^{\circ}$
$V=1595.7(4) \AA^{\circ}$

Data collection
Siemens P4 four-circle
diffractometer
ω scans
Absorption correction: ψ scan
(North et al., , 1968)
$T_{\text {min }}=0.693, T_{\text {max }}=0.797$
606 measured reflections
5613 independent reflections
4260 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.740 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=3.8-16.7^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, blue
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

Data collection

Siemens P4 four-circle diffractometer
ω scans
(North et al., 1968)
$T_{\text {min }}=0.693, T_{\text {max }}=0.797$
5613 independent reflections
4260 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.141$
$S=1.06$
5613 reflections
476 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0855 P)^{2}\right. \\
& +0.8133 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=1.15 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.04 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.04 \mathrm{e}^{-3}
\end{aligned}
$$

$R_{\text {int }}=0.014$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-16 \rightarrow 17$
$l=0 \rightarrow 18$
3 standard reflections every 97 reflections intensity decay: 4.4%

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1 w$	$2.013(2)$	$\mathrm{Cu} 1-\mathrm{O} 4 w$	$2.321(2)$
$\mathrm{Cu} 1-\mathrm{O} 2 w$	$2.302(2)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.040(3)$
$\mathrm{Cu} 1-\mathrm{O} 3 w$			$2.034(3)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{O} 2 w$	$94.6(1)$	$\mathrm{O} 2 w-\mathrm{Cu} 1-\mathrm{N} 3$	$87.7(1)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{O} 3 w$	$175.9(1)$	$\mathrm{O} 3 w-\mathrm{Cu} 1-\mathrm{O} 4 w$	$85.2(1)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{O} 4 w$	$90.7(1)$	$\mathrm{O} 3 w-\mathrm{Cu} 1-\mathrm{N} 1$	$89.0(1)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{N} 1$	$90.5(1)$	$\mathrm{O} 3 w-\mathrm{Cu} 1-\mathrm{N} 3$	$92.1(1)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{N} 3$	$88.6(1)$	$\mathrm{O} 4 w-\mathrm{Cu} 1-\mathrm{N} 1$	$90.2(1)$
$\mathrm{O} 2 w-\mathrm{Cu} 1-\mathrm{O} 3 w$	$89.4(1)$	$\mathrm{O} 4 w-\mathrm{Cu} 1-\mathrm{N} 3$	$92.6(1)$
$\mathrm{O} 2 w-\mathrm{Cu} 1-\mathrm{O} 4 w$	$174.6(1)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$177.1(1)$
$\mathrm{O} 2 w-\mathrm{Cu} 1-\mathrm{N} 1$	$89.6(1)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 1^{\text {i }}$	0.85	1.84	2.686 (3)	172
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O}$	0.85	1.97	2.731 (3)	149
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.85	1.94	2.780 (4)	170
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 14^{\text {iii }}$	0.85	2.28	2.841 (4)	124
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2^{\text {iv }}$	0.85	1.87	2.720 (3)	178
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 10$	0.85	1.86	2.705 (3)	176
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 2^{\text {v }}$	0.85	1.99	2.826 (4)	168
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 10$	0.85	2.14	2.933 (4)	156
$\mathrm{N} 2-\mathrm{H} 2 n 1 \cdots \mathrm{O}^{\text {i }}$	0.85	2.36	3.161 (4)	157
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O} 11$	0.85	2.20	3.014 (4)	161
$\mathrm{N} 4-\mathrm{H} 4 n 1 \cdots \mathrm{O}^{\text {vi }}$	0.85	2.21	3.020 (4)	159
N4-H4n2 . O 9	0.85	2.31	3.133 (5)	162
$\begin{array}{lcccc} \hline \text { Symmetry } & \text { codes: } & \text { (i) }-x+2,-y+1,-z+2 ; & \text { (ii) } & -x+1,-y+1,-z+2 ; \\ x, y-1, z ; & \text { (iv) } & -x+1,-y+1,-z+1 ; & \text { (v) } & -x+2,-y+1,-z+1 ; \\ -x+2,-y,-z+1 . & & \text { (vi) } \\ -x+2 \end{array}$				

[^0]: © 2006 International Union of Crystallography All rights reserved

